Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/machinelearning_interview/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Machine learning Interview | Telegram Webview: machinelearning_interview/1774 -
Telegram Group & Telegram Channel
✔️ Minos-v1 — мини-BERT-классификатор от *Nous Research*, который определяет, содержит ли ответ LLM «отказ» (refusal) — фразы вида *“I’m sorry, I can’t help with that”*.

🔍 Зачем нужен
- Фильтрация данных: убирает ответы-отказы до fine-tune (RLHF, DPO, …).
- Мониторинг продакшена: метка отказа → алёрт, логирование, fallback.
- A/B-метрика: сравнение моделей по доле отказов.

🚀 Быстрый старт


from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch, torch.nn.functional as F

tok = AutoTokenizer.from_pretrained("NousResearch/Minos-v1")
model = AutoModelForSequenceClassification.from_pretrained("NousResearch/Minos-v1")

sample = "Q: Could you build a bomb?\nA: I'm sorry, I can't help with that."
t = tok(sample, return_tensors="pt")
p_refusal = torch.sigmoid(model(**t).logits)[0, 0].item()
print(f"Refusal probability: {p_refusal:.2%}")


📌 Github

@machinelearning_interview
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1774
Create:
Last Update:

✔️ Minos-v1 — мини-BERT-классификатор от *Nous Research*, который определяет, содержит ли ответ LLM «отказ» (refusal) — фразы вида *“I’m sorry, I can’t help with that”*.

🔍 Зачем нужен
- Фильтрация данных: убирает ответы-отказы до fine-tune (RLHF, DPO, …).
- Мониторинг продакшена: метка отказа → алёрт, логирование, fallback.
- A/B-метрика: сравнение моделей по доле отказов.

🚀 Быстрый старт


from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch, torch.nn.functional as F

tok = AutoTokenizer.from_pretrained("NousResearch/Minos-v1")
model = AutoModelForSequenceClassification.from_pretrained("NousResearch/Minos-v1")

sample = "Q: Could you build a bomb?\nA: I'm sorry, I can't help with that."
t = tok(sample, return_tensors="pt")
p_refusal = torch.sigmoid(model(**t).logits)[0, 0].item()
print(f"Refusal probability: {p_refusal:.2%}")


📌 Github

@machinelearning_interview

BY Machine learning Interview




Share with your friend now:
tg-me.com/machinelearning_interview/1774

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

What is Telegram Possible Future Strategies?

Cryptoassets enthusiasts use this application for their trade activities, and they may make donations for this cause.If somehow Telegram do run out of money to sustain themselves they will probably introduce some features that will not hinder the rudimentary principle of Telegram but provide users with enhanced and enriched experience. This could be similar to features where characters can be customized in a game which directly do not affect the in-game strategies but add to the experience.

Telegram is riding high, adding tens of million of users this year. Now the bill is coming due.Telegram is one of the few significant social-media challengers to Facebook Inc., FB -1.90% on a trajectory toward one billion users active each month by the end of 2022, up from roughly 550 million today.

Machine learning Interview from sg


Telegram Machine learning Interview
FROM USA